Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Korean Journal of Legal Medicine ; : 14-21, 2021.
Article in Korean | WPRIM | ID: wpr-917823

ABSTRACT

Numerous methods for human body fluid identification using microbiological markers specific to different human body parts are well-established in forensic science. However, method for vaginal fluid screening have not been standardized yet. Therefore, in this study, a real-time polymerase chain reaction based assay for vaginal fluid identification was devised using bacteria residing in human vagina. This method employed three markers, namely Lactobacillus iners, Lactobacillus crispatus, and Bacteroides fragilis. L. iners and L. crispatus were chosen due to their high abundance in the vagina, whereas B. fragilis resides in the rectum. To examine the suitability of the new method for forensic microbial applications, a study of the distribution of vaginal flora in 143 Korean women was performed, along with characterization of the specificity, and performance of the new assay. Additionally, a casework study based on 130, 21, 20 and 17 DNA samples collected from the vagina, anus, saliva, blood, respectively, was carried out. L. iners (80.4%) and L. crispatus (55.2%) were detected with high abundance in the vagina of Korean women. The specificity of these markers was verified using microbial DNA from 23 species. This method could detect at least 1,000 copies/µL of microorganisms for all markers, thereby highlighting its robust sensitivity for vaginal fluid identification. The casework study confirmed these findings, with 89.2% (116/130) detection of vaginal fluid-derived DNA samples, and no false positives identified from the other sources studied. In conclusion, the developed method is expected to be efficient for preliminary microbiological analysis of vaginal samples in forensics.

2.
The Korean Journal of Nutrition ; : 465-473, 2011.
Article in Korean | WPRIM | ID: wpr-650404

ABSTRACT

Dietary fatty acids are under intense research to identify anti-atherogenic mechanisms, so we investigated green tea powder (GT) as a protector against atherogenesis originating from lipid peroxidation such as 4-hydroxynonemal (4-HNE) and malondialdehyde (MDA) in different dietary fatty acid-treated apo E KO mice. Growth rate and dietary efficiency were lower in apo E KO mice with or without LA compared to wild type. Plasma total cholesterol (TC) and triacylglycerol (TG) did not correspond to values in other tissues, but TG in heart tissue decreased significantly by GT after linoleic acid (LA) or docosahexaenoic acid (DHA) was administered. LA induced apoptosis as evidenced by changes in aorta morphology and immunohistochemistry. Lipid peroxides (LPO) was increased in apo E KO mice with or without LA corresponding to the accumulation of 4-HNE or MDA in the proximal aorta above the atria. GT consumption tended to reduce the primary causal mechanism of atherogenic phenomena such as oxidizability in both LA and DHA treated atherogenic mice. A high polyunsaturated fatty acids (PUFA) diet involved the changes on stress-induced apoptotic signaling by increasing caspase 3, cytochrome c, and nuclear factor-kappaB in the heart tissue, but decreasing the bcl-2 protein. However, GT remarkably reduced the expression of apoptotic signaling, in contrast to the PUFA diet. Therefore, the potential of GT as an anti-atherosclerotic dietary antioxidant was tested in this study.


Subject(s)
Animals , Mice , Aorta , Apolipoproteins E , Apoptosis , Atherosclerosis , Caspase 3 , Cholesterol , Cytochromes c , Diet , Fatty Acids , Fatty Acids, Unsaturated , Heart , Immunohistochemistry , Linoleic Acid , Lipid Peroxidation , Lipid Peroxides , Malondialdehyde , Plasma , Tea , Triglycerides
SELECTION OF CITATIONS
SEARCH DETAIL